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We propose an improved method of the equation of motion approach to study the Kondo problem in
spin-dependent nonequilibrium conditions. We find that the previously introduced additional renormalization
for nonequilibrium Kondo effects is not required when we use a proper decoupling scheme. Our improved
formulation is then applied to address the spin-split Kondo peaks when a spin current injects into a Kondo
system.
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I. INTRODUCTION

The Kondo effect1 has been one of the central and chal-
lenging problems in condensed-matter physics for many
years. In equilibrium, the Kondo peak formed at the Fermi
level is degenerate with respect to spin degrees of freedom
when a magnetic impurity is embedded in a nonmagnetic
metal. By applying a magnetic field, the spin degeneracy of
the Kondo peak can be lifted due to Zeeman splitting of the
impurity level. For a mesoscopic system such as a quantum
dot, one can also use ferromagnetic leads to lift the spin
degeneracy; this is because the ferromagnetic leads provide
the spin dependence of the interaction �or hybridization� be-
tween the conduction electrons of the leads and the localized
state in the quantum dot.2 To explain the above spin-
dependent nonequilibrium phenomena, one frequently relies
on the method of the equation of motion �EOM� where an
additional renormalization in the self-energy is introduced
without rigorous justification.

In this paper, we address two issues. First, we show that
the nonequilibrium Kondo problem can be solved without
the artificial additional renormalization as long as one cor-
rectly keeps the previously neglected terms in the EOM. We
establish a general formulation for the case of finite and in-
finite U in the Anderson model. Second, we use the im-
proved EOM method to predict spin-split Kondo peaks in the
presence of a nonequilibrium spin accumulation. The spin
accumulation has played a crucial role in the emerging field
of spin electronics.3–5 Our prediction directly connects the
separation of the Kondo peaks with the spin accumulation,
and thus it provides a way to determine the spin accumula-
tion in Kondo systems. We emphasize an important distinc-
tion of the present study from the previous one: the nonequi-
librium condition generated by a voltage across the quantum
dot and the ferromagnetic lead has a common chemical po-
tential for spin-up and down electrons, while the spin accu-
mulation generates spin-split chemical potentials.

The rest of the paper is outlined as follows. Section II
presents a generic procedure of the EOM approach. In Sec.
III, we consider the Kondo resonance in the limit of infinite
Hubbard interaction. We benchmark the calculations in the
cases where previous results by other authors are available.
In Sec. IV, we consider an interesting setup and predict the

important consequence of spin accumulation on the Kondo
effect. A summary is given in Sec. V.

II. TECHNICAL PROCEDURE

There are a number of methods to study the Kondo effect
in the spin-dependent nonequilibrium condition. The EOM
approach of the Anderson model has been used intensively in
the past for treating both equilibrium and nonequilibrium
Kondo physics at low temperatures.6–15 The EOM approach
includes resummation of low-order hopping processes and
needs a decoupling scheme in order to obtain a closed ana-
lytical form. We follow the procedure introduced by Appel-
baum, Penn, and Lacroix,16,17 which is known to capture the
right qualitative feature of physics at low temperatures. We
note that other approaches, e.g., numerical renormalization-
group �NRG� method, can also describe the low-temperature
Kondo effect.18,19

The Hamiltonian of the impurity Anderson model is

H = �
k,�

�k�ck�
† ck� + �

�

�d�d�
†d� + Ud�

†d�d�̄
†d�̄

+ �
k,�

Vk��ck�
† d� + d�

†ck�� . �1�

Here ck�
† and d�

† are, respectively, the creation operators for
conduction and d electrons at the impurity site. The quanti-
ties �k� and �d� are the conduction-electron energy dispersion
and the impurity energy, respectively. We assume that
conduction-electron density of states �DOS� is constant but
spin dependent, i.e., �����=1 /2D� when −D���k��D�, U
is the intra-atomic Coulomb interaction at the impurity site,
and Vk� represents the s-d hybridization.

By using the standard procedure for the EOM, we obtain

the impurity Green’s function, Gd� =
def

��d� �d�
†��,
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Gd� =
1 − n̄d�̄���

� − �d� − �0� +
U�1�

� − �d� − U − �0� − �3�

+
n̄d�̄

� − �d� − �0� − U −
U��3� − �1��

� − �d� − U − �0� − �3�

.

�2�

To arrive at Eq. �2�, we have made the decoupling approxi-
mation procedure shown below. The “dynamic” average oc-
cupation number �i.e., frequency dependence� of the impu-
rity level is defined as

n̄d�̄��� =
def

�nd�̄� − �
q

Vq�̄�cq�̄
† d�̄�

D1���,q�
+ �

q

Vq�̄
� �d�̄

†cq�̄�

D2���,q�
, �3�

and the three self-energies are

�0� =
def

�
k

�Vk��2

� − �k�

, �4�

�1� =
def

�
k

�
q
	Vk�̄

� Vq�̄�cq�̄
† ck�̄�

D2���,k�
+

Vk�̄Vq�̄
� �ck�̄

† cq�̄�

D1���,k�



+ �
k
	Vk�̄

� �ck�̄d�̄
†�

D2���,k�
+

Vk�̄�ck�̄
† d�̄�

D1���,k�

�0�, �5�

and

�3� =
def

�
k

�Vk�̄�2

D1���,k�
+ �

k

�Vk�̄�2

D2���,k�
, �6�

where

D1���,k� =
def

� + �k�̄ − �d� − �d�̄ − U �7�

and

D2���,k� =
def

� − �k�̄ − �d� + �d�̄. �8�

We shall point out that the expectation values of �cq�̄
† ck�̄�,

�d�̄
†ck�̄� which have been discarded in previous EOM studies

are important at low temperatures since they diverge loga-
rithmically at the Fermi level as the temperature approaches
to zero. Their values should be self-consistently evaluated
through the following identities:

�cq�̄
† ck�̄� = −

1

�
� fFD���Im��ck�̄�cq�̄

† ��d� , �9�

where fFD���=1 / �e	�+1� is the Fermi-Dirac distribution
function, 	=1 /kBT, and the Green’s function ��ck�̄ �cq�̄

† �� is

��ck�̄�cq�̄
† �� =


q,k

� − �k�̄

+
Vk�̄Vq�̄

� ��d�̄�d�̄
†��

�� − �k�̄��� − �q�̄�
, �10�

and similarly

�d�̄
†ck�̄� = −

1

�
� f���Im��ckā�d�̄

†��d� , �11�

with

��ck�̄�d�̄
†�� =

Vk�̄��d�̄�d�̄
†��

�� − �k�̄�
. �12�

Equation �2� is an extension to a similar result obtained by
Meir et al.20 Equations �2�–�10� constitute a set of the closed
self-consistent equations which can be numerically solved.
Before we carry out numerical calculations, we point out the
key ingredients in our formula: �1� the effective occupancy is
frequency dependent and �2� the higher-order self-energy
contains the intermediate off-diagonal states in momentum
space �e.g., �ck�

† cq��� and charge fluctuations �e.g., �d�
†cq���.

Solving the coupled Eqs. �2�–�10� not only yields the Kondo
resonance at low temperatures but also allows us to explicitly
include the logarithmic divergence in general.

III. KONDO RESONANCE AT AN INFINITY U

For the case of an infinite U, Eq. �2� takes a simpler form,

Gd� =

1 − �nd�̄���� + �
q

Vq�̄�d�̄
†cq�̄�

D2���,q�

� − �d� − ��0� − �
k

�
q

Vk�̄
� Vq�̄�cq�̄

† ck�̄�

D2���,k�

, �13�

where the zero-ordered self-energy is renormalized by a fac-
tor

� = 1 + �
k

Vk�̄
� �ck�̄d�̄

†�

D2���,k�
. �14�

Before we apply our formulation to discuss the Kondo reso-
nance in the presence of the spin accumulation, we examine
various well-studied cases by numerically solving Eq. �13�.
We choose the following parameters for our numerical cal-
culation. The energy of the half-width of the impurity reso-
nance in a nonmagnetic metal, �0=−Im��0���+ i0+��, is
taken to be 200 meV unless specified otherwise. The
conduction-band half-width is D=100�0. The degenerate
impurity level is �d=−6�0.

The simplest case is the conventional equilibrium Kondo
problem where neither impurity state nor hybridization is
spin dependence. Figure 1 shows the impurity spectral den-
sity ��d↑=�d↓� for four temperatures. As expected, the virtual
bound level with a broad spectrum and a sharp peak at the
Fermi level known as the Kondo peak appears. The Kondo
peak is suppressed and broadened when the temperature is
increased. The Kondo temperature which is defined as the
full width of the Kondo peak is TK�exp���d /2�0�. These
well-known results agree with many various approaches,
e.g., the scaling analysis21 and the noncrossing
approximation.22 Meir et al.23 and Martinek et al.24 also used
the EOM approach to derive these Kondo peaks in the ab-
sence of spin polarization.
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We now turn on the spin polarization. In a quantum dot,
the spin polarization is introduced via the coupling to a fer-
romagnetic lead. In this case, one can parametrize the spin
dependence through the hybridization parameter, i.e., ��

=�0�1−�P�, where the parameter 0
 P
1 and �= �1 for
spin up �+1� and down �−1�. The results are shown in Fig. 2.
When P is nonzero, the Kondo resonance splits �Figs. 2�a�
and 2�b��, i.e., the peak for spin-up �down� spectral density
shifts below �above� the Fermi energy. Note also that the
intensity of the peak for spin up �down� is suppressed �en-
hanced� compared to the equilibrium Kondo peaks �see Figs.

2�a� and 2�b��. These results are again consistent with those
obtained by Martinek et al.24 Another way of introducing the
spin polarization is to apply a magnetic field. In this case, the
Zeeman splitting of the impurity level becomes ��=�d
+��BB, where B is the magnetic field. We find that the
Kondo peaks for spin up and down are separated by 2�BB
�not shown�, which agrees with that in Ref. 23.

The agreement of our results with other approaches vali-
dates the EOM approach in Eq. �2� or �13�. The significance
of our EOM approach is that it does not rely on the addi-
tional renormalization introduced in the previous EOM
technique.20 Note that dephasing broadening �� was intro-
duced by Meir et al.20 and Martinek et al.24 in a heuristic
way to describe decoherence due to a finite bias voltage or
impurity level splitting, which only take into account the real
part of self-energy corrections. Since we can solve the im-
proved EOM fully self-consistently, not only the real part but
also the imaginary one of self-energy correction have been
naturally included. The dephasing broadening and the Kondo
resonance peak splitting have been automatically demon-
strated here. It is unclear whether it is essential or necessary
to introduce the dephasing broadening lifetime to study non-
equilibrium Kondo problems. The purpose of the additional
renormalization is to account for the spin-dependent level
splitting and broadening.23,24 The lack of rigorous justifica-
tion for the existence of the additional renormalization has
cast a doubt for the effectiveness of the EOM approach for
the nonequilibrium Kondo problem. In our improved EOM
formula, we have shown that the correct Kondo resonance
can be derived without introducing the additional renormal-
ization. Comparing with previous calculations, we have
properly evaluated terms such as �cq�̄

† ck�̄� and �d�̄
†ck�̄�
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FIG. 1. Spectral density �d� calculated via the EOM method for
an infinity U Anderson model for various temperatures in the ab-
sence of spin polarization. The inset displays the zoom-in view of
the Kondo resonance near the Fermi energy.
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FIG. 2. Spectral density �d� calculated via �a� and �b� the EOM method for an infinity U Anderson model for various temperatures for
a fixed degree, P=0.5, of spin polarization, �c� the Kondo resonance splitting as a function of the degree of spin polarization, and �d� the
hybridization strength at a fixed P=0.5.
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through Eq. �5�. These terms make crucial contributions to
the Kondo resonance splitting at low temperatures. Neglect-
ing these terms will lead to severe errors, which has to be
recovered by the artificially adding an additional renormal-
ization.

IV. APPLICATIONS AND DISCUSSIONS

We now apply the EOM to calculate the Kondo resonance
in the presence of the spin accumulation. We consider a bi-
layer structure where a current flows from the ferromagnetic
layer to the nonmagnetic layer containing Kondo impurities,
as schematically shown in Fig. 3. When a spin-polarized cur-
rent injects into the nonmagnetic conductor, a spin accumu-
lation is build up near the interface. Assuming that the fer-
romagnetic layer carries a spin polarization of the current P,
the spin accumulation is25,26 
m= �Pj��B /eD�exp�−x /��,
where j is the current density, � is the spin-diffusion length,
�B is Bohr magneton, D is the diffusion constant, and x is the
distance away from the interface. If we only consider the
Kondo impurity sufficiently close to the interface, i.e., within
the distance of �, we can drop the spatial dependence of the
spin accumulation, i.e., 
m= Pj��B /eD.

To calculate the Kondo resonance from Eq. �13�, we
specify the dependence of the parameters on the spin accu-
mulation. First, the spin accumulation makes the chemical-
potential spin dependent.25,26 Specifically, the chemical-
potential splitting of spin-up and down conduction electron
is �↑−�↓=
m�eD� /�B�= Pj��,27 where � is the resistivity.
Thus one should replace the Fermi level in Eq. �13� by the
spin-dependent chemical potentials for the spin up and down
�↑=EF+ Pj�� /2 and �↓=EF− Pj�� /2, where EF is the
Fermi level. Second, the hybridization parameter � would
also be spin dependent since the density of states of the con-
duction electrons is modified by the nonequilibrium elec-
trons. However, the nonequilibrium electron density at very
high current density �say 107 A /cm2� is at least several or-
ders of magnitude smaller than the equilibrium electron den-
sity, and thus the correction to � is very small and we will
assume that � remains spin independent. Finally, the spin
accumulation could lead to the spin-dependent energy shift
of the impurity state. If one models the interaction between
the spin accumulation and the impurity via a phenomeno-
logical exchange coupling, i.e., H�=−Jex
m ·Si, where 
m is
the spin accumulation and Si is the impurity spin, the impu-
rity level would be spin split; this will be equivalent to the
case when the impurity is subject to an effective magnetic
field Beff=Jex
m. Although the magnitude of the effective
field could be respectable for a high current density, the local

level splitting by a magnetic field has already been thor-
oughly investigated and thus we neglect the effect of the
direct coupling between the spin accumulation and the im-
purity. Therefore, we focus on the Kondo resonances due to
spin-dependent Fermi levels. We should emphasis that
Kondo problem due to the spin-dependent chemical potential
has been recently investigated by Katsura.28 However, this is
very different from our considering in several aspects; First,
when considering a quantum dot connected by the spin-
dependent chemical potential, Katsura28 started with Kondo
Hamiltonian model and used the method of Bethe ansatz to
exactly solve the nonequilibrium Kondo problem. The ob-
tained results are thus limited to a special point in the param-
eter space of the model. Second, we focus on the single
impurity Anderson model in a very interesting medium
where spin accumulation is generated either by applying the
spin-polarized current or by spin injection. Finally, by using
our improved EOM approach, we can demonstrate more de-
tails about DOS spectrum at different temperatures.

In Fig. 4, we show the spectral density �d� for various
temperatures with a spin-current-induced chemical-potential
shift. It is found that the spin-current influence on the Kondo
resonance splitting is robust against temperatures. The more
the amplitude of chemical-potential relative shift by spin cur-
rent, the more pronounced the Kondo resonance splitting be-
tween two spin channels will be. Noticeably, the amplitude
of the split Kondo peaks remains robust against the spin-
induced chemical-potential splitting �compare Fig. 4 with
Fig. 1�, which is different from the case of a ferromagnetic
metal as discussed before �see Figs. 2�a� and 2�b��. This ob-
servation is the hallmark of the Kondo resonance splitting
from the spin accumulation—a purely nonequilibrium effect.

Advanced experimental techniques such as magnetic tun-
neling into quantum dots and STM measurement would be
able to detect the spin-split Kondo peaks. This will provide a
high-resolution detection of the spin accumulation. For ex-
ample, for a relatively small current density of the order of
105 A /cm2, the Kondo peaks will be separated by about

E=0.02 meV for a typical transition metal such as Fe �note
that the width of the Kondo resonance, which is of the order
of the Kondo temperature�. In comparison, the reliable mea-

J
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Magnetic impurity

STM
J

J

FIG. 3. Schematic illustration of a spin current injected from a
ferromagnetic layer to a nonmagnetic conductor containing a mag-
netic impurity.
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FIG. 4. Spectral density �d� calculated via the EOM method for
an infinity U Anderson impurity for various temperatures in pres-
ence of spin accumulation with ��=2 meV.
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surement of the spin accumulation based on the Johnson
Silsbee-Johnson technique25 usually requires the current den-
sity more than 107 A /cm2 in order to derive sufficient large
signals.

V. CONCLUSION

In conclusion, we have developed an improved decou-
pling scheme for the EOM approach in Kondo problems at
zero and finite temperatures. We have shown Kondo reso-
nance peak spin splitting by keeping the previously dis-
carded terms in the EOM approach, which the dephasing
broadening and the additional renormalization are naturally
implemented. We then apply the improved EOM approach to
study the Kondo effect in the presence of the spin-polarized
current induced spin accumulation—this has never been
studied by any methods including the numerical
renormalization-group method. We predict that the Kondo
resonance peaks are spin split due to the spin dependence of
the chemical potentials. Finally, it should be especially em-

phasized that our improved EOM scheme is not only able to
obtain the similar results with the NRG method but also it
can be naturally used to study the finite temperature effect.
Since the finite temperature NRG approach has been imple-
mented very recently to study equilibrium problems and is
much more numerically involved. To our best knowledge, it
has not yet been applied to study the nonequilibrium prob-
lems. As a result, our improved EOM scheme can be used as
a complementary method to address the Kondo impurity
problems.
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